
Reducing	Data	Movement	using	Adaptive-Rate	Computing

P.	Lindstrom	(LLNL)

Data	movement	is	becoming	the	primary	performance	bottleneck	in	high-performance	computing.		Proposed mitigation	strategies	include	reducing	the	precision	of	data	stored	and	moved.		For	instance,	
mixed-precision	arithmetic		performs	some	computations	in	single	or	half	precision	at	the	expense	of	accuracy,	while	inline	data compression	uses	reduced	but	fixed-size	storage,	with	precision	dictated	by	
how	well	the	data	compresses.		Such	uniform	fixed-rate	compression	uses	enough	storage	to	ensure	minimum	precision	in	active	and	numerically	sensitive	regions	of	a	computational	domain,	but	wastes	
precious	bits	on	quiescent	regions.		We	are	developing	adaptive-rate	compressed	arrays	that	vary	storage	size	spatially	to	reduce	data	movement	while	satisfying	user-specified	precision	requirements.

ZFP:	Compressed	floating-point	arrays	
significantly	reduce	memory	usage

ZFP fixed-rate	storage	increases	accuracy	
over	IEEE	by	three	orders	of	magnitude

Adaptive-rate	computing	ensures	bits	are	
allocated	to	where	they	are	most	needed

Our ZFP compressor	stores	floating-point	arrays	compressed.		The	d-dimensional	
arrays	are	partitioned	into	blocks	of	4d values	that	are	independently	compressed	
and	decompressed	on	demand	at	very	high	speed	(up	to	2	GB/s/core).

Illustration of varying the rate spatially over the domain, from 4 bits/value on the left to less than half 
a bit/value on the right, representing as much as 170:1 compression over IEEE double precision.

ZFP arrays	are	available	as	C++	classes	that	use	operator	overloading	to	hide	from	
the	user	the	details	of	compression,	decompression,	and	caching,	allowing	them	
to	replace	conventional	uncompressed	arrays	with	minimal	code	changes.		These	
arrays	support	random	read/write	access	via	ZFP’s fixed-rate	mode.

Conventional	simulation	codes	use	64-bit	double-precision	floating	point	storage	
to	represent	state	variables.		To	evaluate	the	effectiveness	of	reduced	precision	
representations,	we	use	an	Eulerian	finite-volume	shock	propagation	code.

A	uniform	rate	allocation	over	the	domain	has	two	downsides.		First,	too	many	
bits	are	spent	on	easy-to-compress	regions,	resulting	in	an	unnecessarily	precise	
representation	of	the	wake	of	the	shock	and	the	“background”	ahead	of	it,	
which	have	little	impact	on	the	evolution	of	the	simulation.		Conversely,	the	
active	regions	near	the	shock	waves	are	difficult	to	compress	and	are	therefore	
represented	using	far	less	precision,	limiting	solution	accuracy.

Visualization of how the numerical precision varies spatially when fixing the rate at 16 bits/value.  
Note in particular that the most active and important regions (white) around the shock wave are 
least precise—an undesirable consequence of using fixed-rate compression.

LLNL-POST-728998      This	work	performed	under	the	auspices	of	the	U.S.	Department	of	Energy	by	Lawrence	Livermore	National	Laboratory	under	Contract	DE-AC52-07NA27344.

A 3D ZFP block consists of 4×4×4 floating-point values.  
These values are compressed to a progressive, variable-
length bit string that can be truncated at any point.  The 
more bits that are retained, the higher the numerical 
accuracy, much like how single-precision floats can be 
thought of as truncated double-precision values.

ZFP supports	several	compression	modes	that	can	be	independently	selected	for	
each	individual	block,	if	so	desired:
• Fixed	rate:	Uniform	storage	size enables	fast	random	access.
• Fixed	precision:	Uniform	relative	error using	variable-size	blocks.
• Fixed	accuracy:	Uniform	absolute	error using	variable-size	blocks.

By	fixing	the	precision	and	spatially	adapting	the	rate,	we	allocate	more	bits	to	
where	they	are	needed.		We	are	developing	such	variable-rate	arrays	to	achieve	
adaptive-rate	computing,	with	many-fold	reductions	in	data	movement.		Our	
approach	is	analogous	but	complementary	to	adaptive	mesh	refinement,	which	
varies	cell	size	rather	than	precision	to	resolve	physically	important	processes.	

16 bits/value8 bits/value 32 bits/value 64 bits/value

Comparisons	with	16-bit	representations—IEEE	half	precision,	type-3	unums
proposed	by	John	Gustafson,	and	ZFP—reveal	that	ZFP gives	an	almost	identical	
solution	to	the	“ground	truth”	64-bit	solution,	but	using	four	times	less	storage.

Snapshots in time of a shock wave propagating through an L-shaped chamber.

Top row: Final-time solution given by IEEE half precision, type-3 unums, ZFP, and full IEEE double 
precision.  Note how the shock dissipates in the half-precision solution, while ZFP closely matches 
the true solution.  Bottom row: Visualization of the error with respect to IEEE double precision.

fin
al

-t
im

e 
so

lu
tio

n
fin

al
-t

im
e 

er
ro

r

Adaptive-rate arrays allocate more bits to difficult-to-compress parts of the domain to ensure 
precision (here 40 bits) or accuracy needs are met, still reducing data storage and movement.

32-40 bit precision40-64 bit precision 24-32 bit precision 16-24 bit precision


